|
|
Correctional Institution Preventive Maintenance Software -
There is a great need for preventive maintenance in correctional institutions. The public would be at risk if penal facilities waited to solve problems until after they manifested themselves. Correctional institution preventive maintenance...
Don't get trapped by Rogue Anti-Spyware software!
Recent computer problems raised my suspicions that a hijacker or other malware program had infiltrated its protective software. Too many crashes and program hang-ups were taking place to be normal. Yes, there really shouldn't be any problems in a...
Fashion design CAD/ CAM software
Computer Aided Design is used at various stages in the apparel
and textile industry. The fashion design CAD/CAM software can be
broadly classified into following categories, each relating to a
different design and manufacturing stage.
...
Privacy Heat Generates Little Light
Privacy and security are topics I've been following closely for over two years online and off. I know I've seen some rather vehement and heated opinions voiced on Privacy and I've watched otherwise very level-headed discussions turn rather boistrous...
Secure Your Data - Windows Data Backup Computer Software
In nowadays computers have entered almost every imaginable domain in our lives - from our homes to space shuttles. As they hold more and more precious data - in material or merely sentimental way - securing that data is not only option, but a must....
|
|
|
|
|
|
|
|
Memory Bandwidth vs. Latency Timings
Memory Bandwidth vs. Latency Timings All memory is not created equal, nowadays you need to know which 'flavor' is best for an Intel or AMD PC if you expect the best performance back from your investment.
When Intel released the i865PE/i875P dual channel core logic alongside the Intel Pentium 4C processors, the memory game changed forever. With a DDR memory controller now capable of running dual channel, the Pentium 4 was no longer to be bandwidth limited as it had been with the i845 series. Those single channel DDR chipsets, like the i845PE for instance, could only provide half the bandwidth required by the Pentium 4 processor due to its single channel memory controller.
As the new 800 MHz FSB Pentium 4 processors allowed users to hit never before seen highs in terms of bus speed, many memory manufacturers were trying to capitalize on the situation by releasing every increasing degrees of "high speed" memory.
Unfortunately, to run the memory frequency at the same speed as the FSB (or a 1:1 ratio) almost all the high speed DIMMs (Dual Inline Memory Module) have to have very lax timings. Often, these times are as low as 3-4-4-8!
Think about it this way, a car built for drag racing can go dead straight super fast, but cannot maneuver as well as an F1 race car. Likewise, the F1 racer is good in the corners but will be left in the dust on the drag strip. In other words, today's high speed memory modules are built for one thing only, and that's top speed, where timings really aren't considered all that much.
Memory timings play a key role in terms of overall system performance. More so in 3D based applications which do not need a great deal of bandwidth, but rather quick access between the various pieces of hardware within the computer.
Confused about memory timings?
When one talks about memory timings they're basically talking about how long the system has to wait for the memory to be in a ready state before data is fetched or delivered.
You could think about memory timings as people working at a drive through restaurant; you place your order then wait for the food to be ready. The lower the timings are, the faster the computer (and quicker your order comes) is able to get data from the memory, and the faster the rest of the PC will ultimately be. This rule of thumb applies whether you're on an Intel or AMD based system. As for why there aren't lower timings then 2-2-2-5, JEDEC (the memory governing body) does not think it's possible for current dynamic memory technology to run at 0 or 1.
When we refer to timings it is common to quote a four digit number separated by dashes (ie. 2-2-2-5). The first number always represents CAS (Column Address Strobe) Latency as it's usually the most important.
Next in line is RAS-to-CAS Delay (Row Address Strobe), RAS Precharge and Act-to-Precharge Delay (which is always the final, and largest number).
CAS latency is the delay between the registration of a read command and the availability of the first piece of output data. CAS latency is measured in clock cycles.
With all things equal, a stick of DDR memory capable of running 2-2-2-5 will make the computer operating experience seem faster than a DIMM which may only run at 3-4-4-8. This is because the delay from when the memory receives an instruction, retrieves the data, and sends it back out is less.
Where it starts to get confusing is when you has the choice of buying high speed memory with slow timings. Just about every PC3700+ rated memory module we've seen uses conservative timings after all. If your answer would be to buy fast memory with tight timings, I'm afraid you're going to be disappointed as there are no such modules available yet. So, why are we still interested in fast memory with slow timings then? Well, the answer goes something like this....
Why release fast memory with slow timings?
In highly competitive markets, once a major manufacturer releases a new and innovative product, the rest will surely follow close behind. If one manufacturer doesn't follow suit, their products are considered 'old tech'.
As always, everything always boils down to money and that's why we have
this dilemma; to run faster memory with slower access times, or run slower memory with faster access times.
There are two trains of thought on this, the first is that high speed DIMMs (like PC4000 DDR) can make up for running slower timings by the amount of bandwidth provided to the processor. Specifically, bandwidth is the amount of data that can be moved from one given device to another.
Most DIMMs that run tight timings, such as certain PC3200 & PC3500 modules, have to run the memory at lower MHz than the FSB. However, when overclocking to extreme speeds these DIMMs are bandwidth limiting the processor. What I mean by this, is that when the processor requires a great deal of bandwidth, the CPU will have to wait for another clock cycle before being filled, as the memory is just not fast enough to keep up at the same pace. Having a large pool of bandwidth is great when you're working with applications that process a lot of raw data, such as Photoshop or databases for example.
The other point of view is that CAS2-rated PC3200 & 3500 memory can make up for the lack of bandwidth because the memory has a lower latency that in effect moves data between the CPU and memory faster. Programs that do not require a large amount of bandwidth tend to benefit more from quicker data transfers between the memory and the rest of the computer such as games or 3D applications.
2-3% Improvement
While bandwidth is still very important to the Intel Pentium 4, it's not as important as it once was in the i845PE days of single channel memory controllers. Thanks to the i865PE/i875P's dual channel memory controller things are much brighter. On average, the system with the memory running at 400 MHz (5:4 memory divider enabled) with aggressive memory timings performed 2-3% faster than the system using high speed memory with loose timings.
While that may not seem like a lot to most people, it can make a world of a difference to the enthusiast, especially if you're gunning for that high score in a clan match where every FPS counts.
It seems as if all the large memory manufacturers/suppliers are afraid to lose face by not pumping out high speed memory modules with lax memory timings just so they can list them in their product lines. Many enthusiasts I know, tend to favor slower memory which allows them to run aggressive timings however.
One might say that the benchmarks we used were stacked against memory that uses conservative timings, but if you think about it, games and simple 2D applications are the programs that most consumers run where speedy performance really is important. That's why we ran the benchmarks we did; office environments with their servers or workstation PC are more interested in stability, and overclocking has an element of risk involved for both hardware and software.
Athlon64 based systems seem to act a lot like the 800 MHz FSB Pentium 4 processors in regard to their memory bandwidth and timings when overclocked. However, before conclusions can be drawn in this field, more research has to be done before....
If you're in the market for new memory for your Pentium 4 system and you're only thinking about gaming performance, then you're best bet is to get DDR which is rated to run aggressive timings. Some examples include Mushkin's PC3500 Level II which is rated to run 2-2-2-5 at 217 MHz FSB or Corsair's TwinX-3200LL which are rated for 2-2-2-5 at 200 MHz.
If you're a newbie/novice overclocker and would prefer to buy something that takes a little less work while still producing good numbers on your Pentium 4 system, then by all means get some of the high speed DIMMs that are available on the market. They're not quite as fast as the low latency modules as we've shown, but they're much easier to set up. Now for AMD systems, because the AthlonXP cannot hit as high speeds as the Pentium 4 in general, it is always best to pair an AMD processor with nice low latency memory for the best results.
For more technical articles go to http://www.tornadocomputers.com echie.php
About the Author
CIO & Sr. Vice President for Tornado Computers. Has over 25 years of working with computers. BS in Computer Science from Central State University in Oklahoma.
|
|
|
|
|
Tucows Downloads - Download Freeware and Shareware Software |
Download freeware, shareware, and demos. Maintains over 45000 software titles that are tested, rated, reviewed and ready to download. |
www.tucows.com |
  |
Free Software Downloads and Software Reviews - Download.com |
Download shareware, freeware and Demo software for PC, Mac, Linux, and Handhelds categorized into categories, plus software reviews. |
www.download.com |
  |
Computer software - Wikipedia, the free encyclopedia |
This includes application software such as a word processor, which enables a ... Application software is often purchased separately from computer hardware. ... |
en.wikipedia.org |
  |
Shareware.com - Search for shareware programs and free software ... |
Search for shareware programs from more than a dozen downloadable software directories. |
www.shareware.com |
  |
Jumbo: Free & Shareware MP3 files, Games, Screen Savers & Computer ... |
Source of free and shareware computer programs and utilities for PC and Mac. Evaluate software and read product reviews. Download games and screen savers. |
www.jumbo.com |
  |
Computer Software in the Yahoo! Directory |
Browse categories featuring sites devoted to computer software, including shareware and freeware download sites, operating systems, desktop customization, ... |
dir.yahoo.com |
  |
IEEE Software |
IEEE Computer Society's magazine covering all aspects of software, including software engineering. |
www.computer.org |
  |
Free Downloads on ZDNet | Shareware, Trialware, Evaluation Software |
ZDNet's Software Directory is the Web's largest library of software downloads. Covering software for Windows, Mac, and Mobile systems, ZDNet's Software ... |
downloads.zdnet.com |
  |
FSF - The Free Software Foundation |
Free software is a matter of liberty not price. Think of "free" as in "free speech". |
www.fsf.org |
  |
Apple - Software |
Software products for your digital life. ... The perfect addition for professional review. QuickTime Broadcaster. Encoding software for live events. ... |
www.apple.com |
  |
Open Directory - Computers: Software |
In Partnership with AOL Search. about dmoz | report abuse/spam | help. the entire directory, only in Computers/Software. Top: Computers: Software (38471) ... |
dmoz.org |
  |
freshmeat.net: Welcome to freshmeat.net |
About: The Web browser is probably the most frequently used software today, ... Web professionals can use the software for functional testing and regression ... |
freshmeat.net |
  |
Software - GNU Project - Free Software Foundation (FSF) |
Listing of the GNU software packages. |
www.gnu.org |
  |
Sun Software |
Get enterprise-class software--Solaris 10 OS, the Java Enterprise System, ... Sun Java StorageTek Software reduces cost and complexity with a single, ... |
www.sun.com |
  |
Internet Real Estate.com -- owns and operates a portfolio of the ... |
SOFTWARE.COM · SWEEPSTAKES.COM · PHONE.COM PODCAST.COM ... Software.com | Sweepstakes.com | Phone.com | Podcast.com | Shop.com | Safety.com ... |
www.internetrealestate.com |
  |
Joel on Software |
A weblog by Joel Spolsky, a programmer working in New York City, about software and software companies. |
www.joelonsoftware.com |
  |
Amazon.com Software: Computer & video games, business, accounting ... |
Online shopping for computer & video games, business & office productivity software, software from Microsoft, Apple, Adobe & more; accounting, antivirus, ... |
www.amazon.com |
  |
IBM Software - Home Page |
IBM home page for all of its software products, including Lotus and Tivoli, with keyword search, category browse and AZ product names. |
www.ibm.com |
  |
Opera web browser: Homepage |
Copyright © 2006 Opera Software ASA. All rights reserved. Skip navigation. Opera Software ... Copyright Opera Software ASA . All rights reserved. ... |
www.opera.com |
  |
Google Directory - Computers > Software |
Search only in Software Search the Web ... Software Categorized by Letter: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ... |
www.google.com |
  |
|