|
|
Aristotle the Alchemist
He is unlike the noble Plato. Plato is related to the wise Solon and Critias who was a Pyramid priest in Egypt so we can be sure there was some De Danaan in his blood. Plato created an enduring hierarchy that seeks to set some men above others; I...
Capacitor: An Overview
Anybody in the field of electronics would doubtless be familiar
with a capacitor, but what exactly is it?
A capacitor is, simply, a gadget that is capable of storing
energy in an electric field between two conductors on which
equal but...
Science changes, shouldn't our theology?
Science changes, shouldn’t our faith? Terry Dashner……………….Faith Fellowship Church PO Box 1586 Broken Arrow, OK 74013 Since basic science is ever-changing, shouldn’t our theology change with it? No. Our theology should remain constant, even when...
Scientists Declaration about The Holy Quran and Islam-Alfred Kroner
Professor Kroner is one of the world's most famous geologists, becoming well known among his colleague scientists for his criticisms against the theories of some of the major scientists in his field. Sheikh cAbdul-Majeed A. Zindanî met with him and...
Superultramodern Science (SS) and The Millennium Problems in Mathematics
In this article I address 3 of the 7 millennium problems in mathematics announced by the Clay Mathematics Institute (CMI), USA. I propose solutions (not all of which are meant to be conclusive) to the problems using the ideas in Superultramodern...
|
|
|
|
|
|
|
|
The Fourth Law of Robotics - Part II
Note - Godel's Theorems
The work of an important, though eccentric, Czech-Austrian mathematical logician, Kurt Gödel (1906-1978) dealt with the completeness and consistency of logical systems. A passing acquaintance with his two theorems would have saved the architect a lot of time.
Gödel's First Incompleteness Theorem states that every consistent axiomatic logical system, sufficient to express arithmetic, contains true but unprovable ("not decidable") sentences. In certain cases (when the system is omega-consistent), both said sentences and their negation are unprovable. The system is consistent and true - but not "complete" because not all its sentences can be decided as true or false by either being proved or by being refuted.
The Second Incompleteness Theorem is even more earth-shattering. It says that no consistent formal logical system can prove its own consistency. The system may be complete - but then we are unable to show, using its axioms and inference laws, that it is consistent
In other words, a computational system can either be complete and inconsistent - or consistent and incomplete. By trying to construct a system both complete and consistent, a robotics engineer would run afoul of Gödel's theorem.
Note - Turing Machines
In 1936 an American (Alonzo Church) and a Briton (Alan M. Turing) published independently (as is often the case in science) the basics of a new branch in Mathematics (and logic): computability or recursive functions (later to be developed into Automata Theory).
The authors confined themselves to dealing with computations which involved "effective" or "mechanical" methods for finding results (which could also be expressed as solutions (values) to formulae). These methods were so called because they could, in principle, be performed by simple machines (or human-computers or human-calculators, to use Turing's unfortunate phrases). The emphasis was on finiteness: a finite number of instructions, a finite number of symbols in each instruction, a finite number of steps to the result. This is why these methods were usable by humans without the aid of an apparatus (with the exception of pencil and paper as memory aids). Moreover: no insight or ingenuity were allowed to "interfere" or to be part of the solution seeking process.
What Church and Turing did was to construct a set of all the functions whose values could be obtained by applying effective or mechanical calculation methods. Turing went further down Church's road and designed the "Turing Machine" – a machine which can calculate the values of all the functions whose values can be found using effective or mechanical methods. Thus, the program running the TM (=Turing Machine in the rest of this text) was really an effective or mechanical method. For the initiated readers: Church solved the decision-problem for propositional calculus and Turing proved that there is no solution to the decision problem relating to the predicate calculus. Put more simply, it is possible to "prove" the truth value (or the theorem status) of an expression in the propositional calculus – but not in the predicate calculus. Later it
was shown that many functions (even in number theory itself) were not recursive, meaning that they could not be solved by a Turing Machine.
No one succeeded to prove that a function must be recursive in order to be effectively calculable. This is (as Post noted) a "working hypothesis" supported by overwhelming evidence. We don't know of any effectively calculable function which is not recursive, by designing new TMs from existing ones we can obtain new effectively calculable functions from existing ones and TM computability stars in every attempt to understand effective calculability (or these attempts are reducible or equivalent to TM computable functions).
The Turing Machine itself, though abstract, has many "real world" features. It is a blueprint for a computing device with one "ideal" exception: its unbounded memory (the tape is infinite). Despite its hardware appearance (a read/write head which scans a two-dimensional tape inscribed with ones and zeroes, etc.) – it is really a software application, in today's terminology. It carries out instructions, reads and writes, counts and so on. It is an automaton designed to implement an effective or mechanical method of solving functions (determining the truth value of propositions). If the transition from input to output is deterministic we have a classical automaton – if it is determined by a table of probabilities – we have a probabilistic automaton.
With time and hype, the limitations of TMs were forgotten. No one can say that the Mind is a TM because no one can prove that it is engaged in solving only recursive functions. We can say that TMs can do whatever digital computers are doing – but not that digital computers are TMs by definition. Maybe they are – maybe they are not. We do not know enough about them and about their future.
Moreover, the demand that recursive functions be computable by an UNAIDED human seems to restrict possible equivalents. Inasmuch as computers emulate human computation (Turing did believe so when he helped construct the ACE, at the time the fastest computer in the world) – they are TMs. Functions whose values are calculated by AIDED humans with the contribution of a computer are still recursive. It is when humans are aided by other kinds of instruments that we have a problem. If we use measuring devices to determine the values of a function it does not seem to conform to the definition of a recursive function. So, we can generalize and say that functions whose values are calculated by an AIDED human could be recursive, depending on the apparatus used and on the lack of ingenuity or insight (the latter being, anyhow, a weak, non-rigorous requirement which cannot be formalized).
About the Author
Sam Vaknin ( http://samvak.tripod.com ) is the author of Malignant Self Love - Narcissism Revisited and After the Rain - How the West Lost the East. He served as a columnist for Central Europe Review, PopMatters, and eBookWeb , and Bellaonline, and as a United Press International (UPI) Senior Business Correspondent. He is the the editor of mental health and Central East Europe categories in The Open Directory and Suite101.
|
|
|
|
|
Science/AAAS | Scientific research, news and career information |
International weekly science journal, published by the American Association for the Advancement of Science (AAAS). |
www.sciencemag.org |
  |
Science/AAAS | Table of Contents: 1 December 2006; 314 (5804) |
This Week in Science: Editor summaries of this week's papers. Science 1 December 2006: 1349. ... 2006 American Association for the Advancement of Science. ... |
www.sciencemag.org |
  |
Science.gov : FirstGov for Science - Government Science Portal |
Science.gov is a gateway to government science information provided by US Government science agencies, including research and development results. |
www.science.gov |
  |
ScienceDaily: Your source for the latest research news and science ... |
ScienceDaily -- the Internet's premier online science magazine and science news web site -- brings you the latest discoveries in science, health & medicine, ... |
www.sciencedaily.com |
  |
Science News - New York Times |
Find breaking news, science news & multimedia on biology, space, the environment, health, NASA, weather, drugs, heart disease, cancer, AIDS, mental health ... |
www.nytimes.com |
  |
Science News Online |
Weekly magazine offers featured articles from the current issue along with special online-only features. Includes photo collection, archives, ... |
www.sciencenews.org |
  |
Science in the Yahoo! Directory |
Explore the fields of astronomy, biology, geology, mathematics, and physics and all of their related disciplines with resources designed for professionals, ... |
dir.yahoo.com |
  |
Open Directory - Science |
Agriculture (2454); Anomalies and Alternative Science (525); Astronomy (4208); Biology (20593); Chemistry (4852); Computer Science@ (2358) ... |
dmoz.org |
  |
BBC - Science & Nature |
The best of BBC Science and Nature, from TV and radio, to the web and beyond. Take a tour from the smallest atoms, to the largest whales and the most ... |
www.bbc.co.uk |
  |
Science - Wikipedia, the free encyclopedia |
Sciences versus Science: the plural of the term is often used but is difficult to ... Science education is also a very vibrant field of study and research. ... |
en.wikipedia.org |
  |
Popular Science |
Monthly magazine about current science and technology. |
www.popsci.com |
  |
Science/AAAS | ScienceNOW: The Latest News Headlines from the ... |
AAAS web magazine. Some free sample stories, subscription required for full text. |
sciencenow.sciencemag.org |
  |
ScienceCareers.org | Science Jobs, Funding, Meetings, and Advice ... |
Searchable database of jobs, sorted by field specialty. Can post resume and curriculum vitae. Includes tips for improving the workplace for employers and ... |
sciencecareers.sciencemag.org |
  |
American Association for the Advancement of Science |
Research news, issue papers. Educational programs, science policy (US and international). |
www.aaas.org |
  |
NASA - Science@NASA |
News and features about NASA research, aimed at the general public. Includes sections on astronomy, space science, beyond rocketry, living in space, ... |
science.nasa.gov |
  |
Science NetLinks: Resources for Teaching Science |
Resources for K-12 science educators. |
www.sciencenetlinks.com |
  |
Cool Science for Curious Kids |
Fun and interactive site to help kids appreciate science. Why are snakes like lizards, and monkeys like moose? Find out here. |
www.hhmi.org |
  |
Welcome to the Science Museum |
London museum and library of science. Exhibitions cover all areas of science and technology. Includes online exhibits and a learning area. |
www.sciencemuseum.org.uk |
  |
New Scientist - International News, Ideas, Innovation |
Weekly science and technology news magazine, considered by some to be the world's best, with diverse subject matter. Articles from current issue and ... |
www.newscientist.com |
  |
CNN.com - Science and Space |
Offers news stories related environmental issues, archeology, astronomy, technology, geology and other science topics. |
www.cnn.com |
  |
|