|
|
Introduction to Dedicated Servers
A dedicated server is a single computer on a web-hosting network that is leased or rented, and dedicated to just one customer. A service provider monitors the computer’s hardware, network connectivity, and routing equipment, while the customer...
Printing Troubleshooting Guide
With most printers, over 50% of all problems are customer fixable. This guide was created to help bail you out when you get stuck on tough printing problems. NOTE: If you need specific information or help with a particular printer, please contact...
Registry Cleaners: Why do you need one?
The registry is the place where your computer stores the configuration information about your computer and your installed programs so that your operating system can use them.
Maintaining the registry is an important step in keeping your computer...
SimpleNet Director of Marketing
The 10 Most Important Questions To Ask Your Web Host NOW! So, you’re looking to build a web site or so fed up with your current web host that you are desperate to transfer your site elsewhere? You may not even be aware of your current host’s...
Wireless Networks: How Do They Work?
Wireless networks use radio waves instead of wires to transmit data between computers. Here's how:
The Binary Code: 1s and 0s
It's well known that computers transmit information digitally, using binary code: ones and zeros. This translates well...
|
|
|
|
|
|
|
|
Memory Bandwidth vs. Latency Timings
Memory Bandwidth vs. Latency Timings All memory is not created equal, nowadays you need to know which 'flavor' is best for an Intel or AMD PC if you expect the best performance back from your investment.
When Intel released the i865PE/i875P dual channel core logic alongside the Intel Pentium 4C processors, the memory game changed forever. With a DDR memory controller now capable of running dual channel, the Pentium 4 was no longer to be bandwidth limited as it had been with the i845 series. Those single channel DDR chipsets, like the i845PE for instance, could only provide half the bandwidth required by the Pentium 4 processor due to its single channel memory controller.
As the new 800 MHz FSB Pentium 4 processors allowed users to hit never before seen highs in terms of bus speed, many memory manufacturers were trying to capitalize on the situation by releasing every increasing degrees of "high speed" memory.
Unfortunately, to run the memory frequency at the same speed as the FSB (or a 1:1 ratio) almost all the high speed DIMMs (Dual Inline Memory Module) have to have very lax timings. Often, these times are as low as 3-4-4-8!
Think about it this way, a car built for drag racing can go dead straight super fast, but cannot maneuver as well as an F1 race car. Likewise, the F1 racer is good in the corners but will be left in the dust on the drag strip. In other words, today's high speed memory modules are built for one thing only, and that's top speed, where timings really aren't considered all that much.
Memory timings play a key role in terms of overall system performance. More so in 3D based applications which do not need a great deal of bandwidth, but rather quick access between the various pieces of hardware within the computer.
Confused about memory timings?
When one talks about memory timings they're basically talking about how long the system has to wait for the memory to be in a ready state before data is fetched or delivered.
You could think about memory timings as people working at a drive through restaurant; you place your order then wait for the food to be ready. The lower the timings are, the faster the computer (and quicker your order comes) is able to get data from the memory, and the faster the rest of the PC will ultimately be. This rule of thumb applies whether you're on an Intel or AMD based system. As for why there aren't lower timings then 2-2-2-5, JEDEC (the memory governing body) does not think it's possible for current dynamic memory technology to run at 0 or 1.
When we refer to timings it is common to quote a four digit number separated by dashes (ie. 2-2-2-5). The first number always represents CAS (Column Address Strobe) Latency as it's usually the most important.
Next in line is RAS-to-CAS Delay (Row Address Strobe), RAS Precharge and Act-to-Precharge Delay (which is always the final, and largest number).
CAS latency is the delay between the registration of a read command and the availability of the first piece of output data. CAS latency is measured in clock cycles.
With all things equal, a stick of DDR memory capable of running 2-2-2-5 will make the computer operating experience seem faster than a DIMM which may only run at 3-4-4-8. This is because the delay from when the memory receives an instruction, retrieves the data, and sends it back out is less.
Where it starts to get confusing is when you has the choice of buying high speed memory with slow timings. Just about every PC3700+ rated memory module we've seen uses conservative timings after all. If your answer would be to buy fast memory with tight timings, I'm afraid you're going to be disappointed as there are no such modules available yet. So, why are we still interested in fast memory with slow timings then? Well, the answer goes something like this....
Why release fast memory with slow timings?
In highly competitive markets, once a major manufacturer releases a new and innovative product, the rest will surely follow close behind. If one manufacturer doesn't follow suit, their products are considered 'old tech'.
As always, everything always boils down to money and that's why we have
this dilemma; to run faster memory with slower access times, or run slower memory with faster access times.
There are two trains of thought on this, the first is that high speed DIMMs (like PC4000 DDR) can make up for running slower timings by the amount of bandwidth provided to the processor. Specifically, bandwidth is the amount of data that can be moved from one given device to another.
Most DIMMs that run tight timings, such as certain PC3200 & PC3500 modules, have to run the memory at lower MHz than the FSB. However, when overclocking to extreme speeds these DIMMs are bandwidth limiting the processor. What I mean by this, is that when the processor requires a great deal of bandwidth, the CPU will have to wait for another clock cycle before being filled, as the memory is just not fast enough to keep up at the same pace. Having a large pool of bandwidth is great when you're working with applications that process a lot of raw data, such as Photoshop or databases for example.
The other point of view is that CAS2-rated PC3200 & 3500 memory can make up for the lack of bandwidth because the memory has a lower latency that in effect moves data between the CPU and memory faster. Programs that do not require a large amount of bandwidth tend to benefit more from quicker data transfers between the memory and the rest of the computer such as games or 3D applications.
2-3% Improvement
While bandwidth is still very important to the Intel Pentium 4, it's not as important as it once was in the i845PE days of single channel memory controllers. Thanks to the i865PE/i875P's dual channel memory controller things are much brighter. On average, the system with the memory running at 400 MHz (5:4 memory divider enabled) with aggressive memory timings performed 2-3% faster than the system using high speed memory with loose timings.
While that may not seem like a lot to most people, it can make a world of a difference to the enthusiast, especially if you're gunning for that high score in a clan match where every FPS counts.
It seems as if all the large memory manufacturers/suppliers are afraid to lose face by not pumping out high speed memory modules with lax memory timings just so they can list them in their product lines. Many enthusiasts I know, tend to favor slower memory which allows them to run aggressive timings however.
One might say that the benchmarks we used were stacked against memory that uses conservative timings, but if you think about it, games and simple 2D applications are the programs that most consumers run where speedy performance really is important. That's why we ran the benchmarks we did; office environments with their servers or workstation PC are more interested in stability, and overclocking has an element of risk involved for both hardware and software.
Athlon64 based systems seem to act a lot like the 800 MHz FSB Pentium 4 processors in regard to their memory bandwidth and timings when overclocked. However, before conclusions can be drawn in this field, more research has to be done before....
If you're in the market for new memory for your Pentium 4 system and you're only thinking about gaming performance, then you're best bet is to get DDR which is rated to run aggressive timings. Some examples include Mushkin's PC3500 Level II which is rated to run 2-2-2-5 at 217 MHz FSB or Corsair's TwinX-3200LL which are rated for 2-2-2-5 at 200 MHz.
If you're a newbie/novice overclocker and would prefer to buy something that takes a little less work while still producing good numbers on your Pentium 4 system, then by all means get some of the high speed DIMMs that are available on the market. They're not quite as fast as the low latency modules as we've shown, but they're much easier to set up. Now for AMD systems, because the AthlonXP cannot hit as high speeds as the Pentium 4 in general, it is always best to pair an AMD processor with nice low latency memory for the best results.
For more technical articles go to http://www.tornadocomputers.com echie.php
About the Author
CIO & Sr. Vice President for Tornado Computers. Has over 25 years of working with computers. BS in Computer Science from Central State University in Oklahoma.
|
|
|
|
|
Tom's Hardware |
: Tom's Hardware Guide is the Internet's premiere resource for hardware news and reviews. |
www.tomshardware.com |
  |
HardwareCentral - Your source for in-depth computer hardware info. |
HardwareCentral is the #1 Hardware Information Resource on the 'Net. Featuring over 600 pages of Hardware information, including advice on System ... |
www.hardwarecentral.com |
  |
Apple - Hardware |
Find your favorite Mac, iPod and other Apple accessories. |
www.apple.com |
  |
Ace Hardware |
Nationwide (United States) hardware and home improvement retailer. Includes products, dealer locator and corporate information. |
www.acehardware.com |
  |
Computer hardware - Wikipedia, the free encyclopedia |
The hardware of a computer is infrequently changed, in comparison with software and ... Personal computers, the computer hardware familiar to most people, ... |
en.wikipedia.org |
  |
Hardware - Wikipedia, the free encyclopedia |
Hardware is the general term that is used to describe physical artifacts of a technology. ... In a looser sense, hardware can be major military equipment, ... |
en.wikipedia.org |
  |
Open Directory - Computers: Hardware |
Hardware Central - Computing-centric community providing vital information, support, tools and interaction facilities for power computer users and ... |
dmoz.org |
  |
Microsoft Hardware – Home Page |
Learn about Microsoft mice, keyboards, desktop sets, webcams, media center peripherals, gaming products, fingerprint readers and presentation tools. |
www.microsoft.com |
  |
AnandTech: your source for hardware analysis and news |
Independent hands-on reviews of computer hardware such as motherboards, graphic cards, and CPUs. |
www.anandtech.com |
  |
hardware.com - Routers, switches, firewalls, servers, memory ... |
Supplier of new and refurbished networking hardware and approved and compatible network accessories. Located in the United Kingdom. |
www.hardware.com |
  |
Slashdot: News for nerds, stuff that matters |
From the article: "Although the news caused barely a ripple of reaction in the audience of software and hardware engineers, there are industry analysts who ... |
hardware.slashdot.org |
  |
InformationWeek HardwareTech Center |
Our hardware coverage ranges from mobile computers and PDAs to servers and supercomputers, and the infrastructure issues enterprises deal with every day. ... |
www.informationweek.com |
  |
What is hardware? - A Word Definition From the Webopedia Computer ... |
This page describes the term hardware and lists other pages on the Web where you can find additional information. |
www.webopedia.com |
  |
Google Directory - Computers > Hardware |
Hardware Central - http://www.hardwarecentral.com/ Computing-centric community providing vital information, support, tools and interaction facilities for ... |
www.google.com |
  |
Gifts: Unique Gifts & Gift Ideas at Restoration Hardware |
At Restoration Hardware, you'll explore an exceptional world of high quality unique gifts. Browse our products to find gift ideas & more at Restoration ... |
www.restorationhardware.com |
  |
HwB: The Hardware Book |
HwB provides you with circuits, pinouts, cable/adapter descriptions and other technical information. |
www.hardwarebook.net |
  |
Reg Hardware: Product News and Gadget Reviews from The Register |
More Gadgets Stuff. 5th December 2006 12:09 GMT. Author: Reg Hardware ... 27th November 2006 15:31 GMT. Author: The Hardware Widow ... |
www.reghardware.co.uk |
  |
red hat hardware compatibility lists |
hardware.redhat.com/ - Similar pages |
|
  |
TrueValue.com |
Here's our tip to hang strands of lights with ease. Jeanenne & Jim Tucker Plantation True Value Hardware Richmond, TX ... |
www.truevalue.com |
  |
A complete illustrated Guide to the PC Hardware |
A complete illustrated Guide to the PC Hardware, Logic and Architecture. 500 easy-read articles about the modern PC. Understand the basic architecture of ... |
www.karbosguide.com |
  |
|